Artificial Intelligence in Artistic Creation: Innovation, Homogeneity, and Challenges of Originality
Main Article Content
Abstract
Introduction: Artificial intelligence (AI) transforms artistic creation, allowing for rapid image generation while also posing challenges in terms of originality and visual diversity. This study analyzes the impact of AI on creativity, aesthetic homogenization, and the legal and ethical issues related to authorship. Methodology: A literature review was conducted on the use of AI in art, addressing technological, aesthetic, and legal aspects. Emerging regulatory frameworks were examined, along with studies on AI’s reliance on pre-existing data. Results: While AI has democratized access to visual creation, its dependence on training data limits innovation and encourages stylistic repetition. A risk of aesthetic homogenization was identified, as well as legal gaps regarding the authorship of AI-generated works, since current regulations do not account for AI’s role in artistic creation. Discussion: AI functions more as a tool for reinterpretation or data curation rather than as an autonomous creator. Its widespread use could lead to a standardized aesthetic, affecting artistic diversity. To mitigate these effects, strategies such as prompt engineering and the combination of digital and manual techniques are suggested, along with a regulatory framework to protect originality. Conclusions: AI expands creative possibilities but presents challenges in terms of originality and authorship. A critical approach and collaboration between artists and technology are key to preserving aesthetic diversity and preventing the standardization of artistic production.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Afegbua, M. (2003). Inclusive Digital Futures. https://www.malikafegbua.com/
Chang, M., Druga, S., Fiannaca, A., Vergani, P., Kulkarni, C., Cai, C. y Terry, M. (2023). The Prompt Artists. En Proceedings of the 15th Conference on Creativity and Cognition (pp. 75-87). Association for Computing Machinery. https://doi.org/10.1145/3591196.3593515 DOI: https://doi.org/10.1145/3591196.3593515
Chi, J. (2024). The evolutionary impact of artificial intelligence on contemporary artistic practices. Communications in Humanities Research, 35(1), 6–11. https://doi.org/10.54254/2753-7064/35/20240006 DOI: https://doi.org/10.54254/2753-7064/35/20240006
European Commission. (2025). AI Act. En Shaping Europe’s digital future. https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
Gourvitz, E. y Ameri, L. (2023). Can works created with AI be copyrighted? Copyright Office issues formal guidance. Ropes & Gray. https://www.ropesgray.com/en/insights/alerts/2023/03/can-works-created-with-ai-be-copyrighted-copyright-office-issues-formal-guidance
Herrera Ávila, T. (2025). Ficciones algorítmicas: Desafíos éticos y políticos de la era de la inteligencia artificial. Astrolabio. Revista Internacional de Filosofía, 30, 1-12. https://doi.org/10.1344/astrolabio.v1i30.50297 DOI: https://doi.org/10.1344/astrolabio.v1i30.50297
Hristov, K. (2017). Artificial Intelligence and the Copyright Dilemma. IDEA: The Journal of the Franklin Pierce Center for Intellectual Property, 57(3), 431-454. https://ssrn.com/abstract=2976428
Jiang, Y., Li, X., Luo, H. y Yin, S. (2022). Quo Vadis Artificial Intelligence? Discover Artificial Intelligence, 2(4). https://doi.org/10.1007/s44163-022-00022-8 DOI: https://doi.org/10.1007/s44163-022-00022-8
Kasap, A. (2019). Copyright and Creative Artificial Intelligence (AI) Systems: A Twenty-First Century Approach to Authorship of AI-Generated Works in the United States. Wake Forest Journal of Business and Intellectual Property Law, 19(4), 335-380. https://doi.org/10.31235/osf.io/gnyha DOI: https://doi.org/10.31235/osf.io/gnyha
Korzynski, P., Mazurek, G., Krzypkowska, P. y Kurasinski, A. (2023). Artificial intelligence prompt engineering as a new digital competence. Entrepreneurial Business and Economics Review, 11(3), 25-37. https://doi.org/10.15678/EBER.2023.110302 DOI: https://doi.org/10.15678/EBER.2023.110302
Kucukali, B. T. (2022). The Protection of AI-Generated Works under European Copyright Law: Toward Adoption of a Neighbouring Rights Approach. University of British Columbia. https://dx.doi.org/10.14288/1.0421298
Manovich, L. y Arielli, E. (2024). Artificial aesthetics: Generative AI, art and visual media. https://manovich.net/index.php/projects/artificial-aesthetics
Martín Prada J. (2024). La creación artística visual frente a los retos de la inteligencia artificial. Automatización creativa y cuestionamientos éticos. Eikón / Imago, 13, e90081. https://doi.org/10.5209/eiko.90081 DOI: https://doi.org/10.5209/eiko.90081
Mazzi, F. (2023). Authorship in artificial intelligence-generated works: Exploring originality in text prompts and artificial intelligence outputs through philosophical foundations of copyright and collage protection. The Journal of World Intellectual Property,27, 410-427. https://doi.org/10.1111/jwip.12310 DOI: https://doi.org/10.1111/jwip.12310
Paquette, L. (2021). Artificial Life Imitating Art Imitating Life: Copyright Ownership in AI-Generated Works. Intellectual Property Journal, 33, 183-215. https://www.proquest.com/openview/bd7c4eeb0501273765a62eca437241c0/1.pdf?cbl=46743&pq-origsite=gscholar&utm_source=chatgpt.com
de Propios Martínez, C. (2022). Arte e inteligencia artificial: técnicas de aprendizaje automático en el arte generativo actual [Tesis doctoral]. Universidad Complutense de Madrid. https://hdl.handle.net/20.500.14352/3923
Sáez-Velasco, S., Alaguero-Rodríguez, M., Delgado-Benito, V. y Rodríguez-Cano, S. (2024). Analysing the Impact of Generative AI in Arts Education: A Cross-Disciplinary Perspective of Educators and Students in Higher Education. Informatics, 11(2), 37. https://doi.org/10.3390/informatics11020037 DOI: https://doi.org/10.3390/informatics11020037
Samuelson, P. (2025). AI authorship revisited. Assessing the evolving perspectives regarding the copyright aspects of generative artificial intelligence outputs. Communications of the ACM, 68(2), 26-28. https://doi.org/10.1145/3732797 DOI: https://doi.org/10.1145/3732797
Vertedor Romero, J. (2023). Editorial. AI-driven art: la inteligencia artificial en el arte y el diseño. UMÁTICA. Revistas sobre creación y análisis de la imagen, 5(6), 9-20. https://doi.org/10.24310/umatica.2023.v5i6.18315 DOI: https://doi.org/10.24310/umatica.2023.v5i6.18315
Artículos relacionados
Álvarez-Herrero, J.-F. (2024). Opinión del alumnado universitario de educación sobre el uso de la IA en sus tareas académicas. European Public & Social Innovation Review, 9, 1-18. https://doi.org/10.31637/epsir-2024-534 DOI: https://doi.org/10.31637/epsir-2024-534
Carral, U. y Elías, C. (2024). Aplicación de herramientas de IA como metodología para el análisis de la toxicidad en la conversación en redes sociales: Estudio de caso de la política española en Twitter. Revista Latina de Comunicación Social, 82, 1-18. https://doi.org/10.4185/rlcs-2024-2205 DOI: https://doi.org/10.4185/rlcs-2024-2205
Flores, R. A. R., Flores, C. M. R. y Palomar, A. Z. (2025). Estudiantes de secundaria e inteligencia artificial: Perspectiva desde la neuroeducación sobre la alfabetización, cognición y creatividad. Journal of Neuroeducation, 5(2), 77-88. https://doi.org/10.1344/joned.v5i2.49030 DOI: https://doi.org/10.1344/joned.v5i2.49030
García Huertas, J. G. y López de la Torre, L. (2024). El Neurodiseño Web y la experiencia del usuario. Análisis de un caso práctico: Zara. Revista de Ciencias de la Comunicación e Información, 30, 1-15. https://doi.org/10.35742/rcci.2025.30.e306 DOI: https://doi.org/10.35742/rcci.2025.30.e306
Toledo, J. A. H. y Ruiz, E. P. (2025). Productividad y creatividad: explorando el uso y la apropiación de la inteligencia artificial en la comunicación contemporánea en México. Comunicación y Sociedad, 1-31. https://doi.org/10.32870/cys.v2025.8769 DOI: https://doi.org/10.32870/cys.v2025.8769